
糖鎖受託解析サービス

こんな事はありませんか?

糖鎖が影響しているかも。私達の解析サービスで解決を支援します。

発現したタンパク質の電気泳動バンドが シングルにならない or 毎回異なる

疾患マーカー探索をしているが、 タンパク質の差が無い

タンパク質の活性が以前と 変わった or 毎回変わる

▼ たとえば、糖鎖分析はこんなところで利用されています

【バイオ医薬品】

- 抗体の糖鎖品質管理
- 産生細胞の状態確認

【幹細胞研究】

- 幹細胞の品質管理
- ・分化状態の確認

【ヒト・動物の組織】

疾患マーカー探索研究

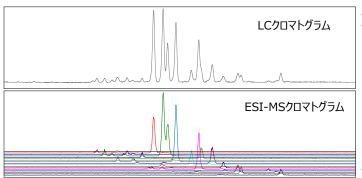
【農産物・水産物】

- ・機能性オリゴ糖研究
- ・マーカー探索研究

〈受託サービスの特長〉

- ✓最短2週間でレポート速報
- ✓目的に応じてリーズナブルな費用をご提案
- ✓事前・事後の技術的相談に応じます

まずはお気軽に ご相談下さい



糖鎖受託測定サービス

■ データレポート(例)

質量データから推測した糖鎖組成

П					
l	peak	obsd m/z	calcd m/z	ion species	Estimated glycan composition ('GlycoMod' database)
l	5	790.29	790.30	[M-2H] ²⁻	$(HexNAc)_2 (Deoxyhexose)_1 + (Man)_3 (GlcNAc)_2$
l	7	891.82	891.84	[M-2H] ²⁻	$(HexNAc)_3 (Deoxyhexose)_1 + (Man)_3 (GlcNAc)_2$
l	10	871.31	871.33	[M-2H] ²⁻	$(Hex)_1 (HexNAc)_2 (Deoxyhexose)_1 + (Man)_3 (GlcNAc)_2$
l	11	871.31	871.33	[M-2H] ²⁻	(Hex)1 (HexNAc)2 (Deoxyhexose)1 + (Man)3(GlcNAc)2
l	12	972.85	972.86	[M-2H] ²⁻	(Hex)1 (HexNAc)3 (Deoxyhexose)1 + (Man)3(GlcNAc)2
1	16	6 952.33 952.35 [M-2H] ²⁻ (Hex) ₂ (HexNAc) ₂ (Deoxyl		[M-2H] ²⁻	(Hex) ₂ (HexNAc) ₂ (Deoxyhexose) ₁ + (Man) ₃ (GlcNAc) ₂
l	17	1053.37	1053.38	[M-2H] ²⁻	(Hex) ₁ (HexNAc) ₃ (NeuGc) ₁ + (Man) ₃ (GlcNAc) ₂
l	23	1016.85	1016.87	[M-2H] ²⁻	$(HexNAc)_2 (Deoxyhexose)_2 (NeuGc)_1 + (Man)_3 (GlcNAc)_2$
l			1016.87	[M-2H] ²⁻	$(Hex)_1 \; (HexNAc)_2 \; (Deoxyhexose)_1 \; (NeuAc)_1 \; + \; (Man)_3 (GlcNAc)_2$
l	27	1097.88	1097.90	[M-2H] ²⁻	$(Hex)_1 \; (HexNAc)_2 \; (Deoxyhexose)_2 \; (NeuGc)_1 \; + \; (Man)_3 (GlcNAc)_2$
l			1097.90	[M-2H] ²⁻	$(Hex)_2 \; (HexNAc)_2 \; (Deoxyhexose)_1 \; (NeuAc)_1 \; + \; (Man)_3 (GlcNAc)_2$
	28	1199.42	1199.44	[M-2H] ²⁻	$(Hex)_1 \; (HexNAc)_3 \; (Deoxyhexose)_2 \; (NeuGc)_1 \; + \; (Man)_3 (GlcNAc)_2$
1			1199.44	[M-2H]2-	(Hex) ₂ (HexNAc) ₃ (Deoxyhexose) ₁ (NeuAc) ₁ + (Man) ₃ (GlcNAc) ₂

■ 受託測定サービス 価格表

品番	サービス名 (解析対象)	内 容	参考価格 (税別)
BS-X4913	糖鎖LC-MS測定サービス (N型糖鎖, O型糖鎖)	EZGlyco®, BlotGlyco®キット(下記)を使用して精製・ラベル化された糖鎖を提供いただきLC-MS測定を実施。LCの主要10ピークについてMS解析を行い糖鎖組成を推定。2ABもしくはPAラベル化されたN型糖鎖、O型糖鎖解析に対応。	¥ 92,000
BS-X4914	N型糖鎖LC-MS解析サービス (N型糖鎖)	N型糖鎖解析に対応。未処理サンプルを提供いただき、前処理、糖鎖精製・ラベル化(2ABまたはPAラベル化)、LC-MS測定を実施。LCの主要10ピークについてMS解析を行い糖鎖組成を推定。	¥ 343,000
BS-X4989	O型糖鎖LC-MS解析サービス (O型糖鎖)	未処理サンプルを提供いただき、EZGlyco O-Glycan Prep Kitを使用してO型糖鎖サンプルを調製、LC-MS測定を実施。LCの主要10ピークについてMS解析を行い糖鎖組成を推定。	¥ 458,000
BS-X4920	糖鎖LC-MS追加データ処理 サービス (N型糖鎖, O型糖鎖)	BS-X4913, X4914, X4989で報告したLC-MSデータについて、追加 10ピークのMS解析および糖鎖組成推定を実施	¥ 58,000
BS-49201	GlycanMap™ Xpress N型糖鎖解析サービス	MALDI-TOF MSによる糖鎖解析データを提供。多検体の一斉解析に適しています。詳細はお問合せ下さい。	¥ 114,000

■ 関連製品 糖鎖サンプル調製キット

品番	品名	内 容	入数	参考価格(税別)
BS-X4410	EZGlyco® mAb-N Kit with 2-AB	IgGのN型糖鎖分析キット	10回分	¥ 98,000
BS-45414	BlotGlyco® 10B	糖タンパク質のN型糖鎖分析キット(LC, LC-MS)	10回分	¥ 52,000
BS-41601	EZGlyco® O-Glycan Prep Kit	糖タンパク質のO型糖鎖分析キット(LC, LC-MS)	10回分	¥ 114,000

◆ 住友ヘークライト株式会社

■ S-バイオ事業部 マーケティング・営業部

〒140-0002 東京都品川区東品川2-5-8 天王洲パークサイドビル 【東日本エリア】TEL:03-5462-4831 FAX:03-5462-4835 【西日本エリア】TEL:06-7669-0031 FAX:06-7223-8691

■ E-mail: s-bio_inquiry@ml. sumibe. co. jp

■ URL : http://www.sumibe.co.jp

